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1. Introduction   

We discuss basic concepts and methods for the statistical analysis of quantitative MRI data, with 
a focus on the types of MRI data most commonly utilized as outcome measures for clinical trials 
in multiple sclerosis (MS).  The discussion is in the context of a randomized controlled clinical 
trial with a placebo (Pl) and an active treatment (Rx) arm.  Much more detailed presentations of 
these basic statistical concepts and methods are available in excellent introductory statistical 
intended primarily for medical researchers [1-4].   

2. Quantitative MRI Data in MS Clinical Trials   

MS is a chronic disease that affects the central nervous system.  During an MS exacerbation 
inflammation of the myelin sheath disrupts messages passed along the motor and sensory 
nerves.  Areas of demyelination may result reflected by scar tissue or lesions.  MRI imaging 
allows visualization of these lesions, leading to the quantitative MRI data most commonly used 
as outcome measures for clinical trials in MS: the counts and volumes of these lesions.   

MRI imaging has been included in most clinical trials in MS since the pivotal trial establishing 
the benefit of interferon beta-1b in relapsing-remitting MS [5, 6].  Phase III trials are designed 
with a clinical endpoint but it has become customary to obtain MRI images from all patients at 
screening, at baseline and at least annually during the trial.  A “frequent MRI imaging” cohort is 
sometimes also included consisting of patients with MRI images obtained on a more frequent 
basis, typically monthly, although perhaps only for the first six months or year of follow-up.  In 
contrast, Phase II trials are often designed with a MRI endpoint based on frequent MRI imaging 
as the primary outcome and with much shorter follow-up, often no more than one year.    

Both T1 and T2-weighted scans are usually obtained.  The T1-weighted scan is used with an 
injection of gadolinium, a contrast agent.  Lesions appear on the T1 image as bright areas 
(enhancements) where gadolinium has been able to cross the blood/brain barrier and on the T2 
image as white areas.  The volume of T2 lesions, the lesion burden, indicates the volume of 
brain tissue affected by the MS disease process.  Comparison with previous images allows 
identification of new, recurrent and persistent lesions on the T1 image and new, recurrent and 
enlarging lesions on the T2 image.  The different lesion counts are often combined into an 
overall count of unique lesions that are active, the combined unique activity count.   

These MRI outcomes are available at each scheduled MRI time point during follow-up.  
Typically, this longitudinal MRI data for each patient is summarized over time for statistical 
analysis.  The most common summary of the repeated lesion burden readings is the change in 
lesion burden from baseline to the end of study.  For the lesion count outcomes, the most 
common summary is the accumulated count over all the scans obtained for this patient during 
follow-up.  A simpler overall summary is the proportion of active scans for each patient.  Hence, 
statistical methods for count and continuous responses are of greatest relevance.  
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3. Basic Statistical Concepts 

The objective of statistical science is to convert data into information.  To accomplish this, 
statistical scientists develop and apply efficient methods for collecting data (study design), for 
summarizing and presenting data (descriptive statistics), and for drawing conclusions from data 
(inferential statistics).  Clinical trials are carried out to assess the efficacy of therapies, so the 
discussion here will focus on aspects of inferential statistics.   

All techniques of statistical inference have the same objective: to use data collected on a sample 
of patients to draw conclusions about the population from which those patients were sampled.  
The responses of sample patients convey information about what the responses of the population 
of patients would be if one measured them.  The extreme importance of appropriate study design 
to guarantee that the sample genuinely represents the population is self-evident.   

The eligibility criteria for a clinical trial identify the target population of patients about which 
conclusions are desired.  Randomization ensures that the assignment of patients to the Pl and Rx 
arms is not subject to bias.  This generates random samples of patients from the two conceptual 
populations of interest: the treatment population consisting of the target population with patients 
subjected to Rx and the placebo population consisting of the target population with patients 
subjected to Pl.  Comparison of the responses of the patients in the two random samples then 
allows conclusions to be drawn concerning the differences that would be observed in these two 
conceptual populations (e.g., in the mean response) if responses were obtained from all the 
patients in the target population.   

4. Basic Statistical Methods for Continuous and Count Data   

The basic statistical methods appropriate for continuous responses such as the change in lesion 
burden can also be used for count responses such as the accumulated combined unique activity.  
Suppose then that a randomization scheme has resulted in simple random samples of nRx and nPl 
patients on the Rx and Pl arms of a clinical trial and an investigator wishes to use a continuous 
or count outcome measure to assess whether Rx has an effect differing from that of Pl.   

A histogram or boxplot provides an immediate visual impression of a data set’s key features: 
• the location of the center of the data set,  
• the degree of symmetry exhibited by the data set, 
• the amount of spread in the data set, 
• the presence of any outlying values in the data set.   

The location of the center and the amount of spread in a data set is usually described by the 
sample average (ave) and standard deviation (SD).  When serious departures from symmetry or 
extreme outliers are present, alternative summaries such as the median for the center and the 
interquartile range for the spread might better describe these features.   

For sets of data without serious departures from symmetry or extreme outliers, the ave and SD 
provide a rough but informative description of the data set via the empirical rule:   

• a majority of the data values (about 68%) will lie within one SD of ave, 
• most of the data values (about 95%) will lie within two SDs of ave, 
• essentially all of the data values (about 99.7%) will lie within three SDs of ave. 

These exact percentages apply only if the histogram is well approximated by a normal curve, 
but this empirical rule provides a useful qualitative description for most data sets.   
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As for any measurement process, MRI imaging is subject to multiple sources of error.  At any 
point in time, a patient has a certain value of lesion burden, call it X.  From a scan of this patient, 
the value obtained for the patient’s lesion burden is not X itself, but rather X contaminated by 
these sources of error.  This leads to a measured lesion burden Y that can be represented as 

XXY ε+= , 
where Xε  is the error made in measuring X, often referred to as the noise in the measurement 
process.  Although impossible in practice, it is useful to imagine measuring this patient’s lesion 
burden repeatedly under exactly the same conditions at exactly the same instant of time; each 
repeated measurement involves a new MRI scan and a new analysis of the resulting image to 
obtain a new measured value of the patient’s lesion burden.  Each repetition yields its own value 
of Xε , so the resulting measured values are all different.   

The histogram of the Xε ’s describes the properties of the measurements of this patient’s lesion 
burden X.  The ave of this histogram describes the bias in the measurement process; if ave is 0, 
the process is said to be accurate as no systematic errors are being made in measuring this 
patient’s lesion burden.  The precision of the measurement process is described by the amount 
of spread in the histogram: the smaller the SD, the more precise.  Measurement processes should 
be not only accurate, but also highly precise.   

In the clinical trials context, lesion burden is measured on many patients (on each arm) at each 
visit.  If the measurement process is homogeneous so that the properties of the Xε ’s do not vary 
with the value of X being measured, then the SD of the measured Y values is given by  

21)()( RXSDYSD += , 
where )(/)( XSDSDR ε= .  This describes how lack of precision in the measurement process is 
reflected in increased variability of the measured lesion burden values.  Provided the SD of the 
measurement errors is small relative to the SD of the lesion burdens across patients in the target 
population, the resulting increase in variability of the measured values will be negligible.  

Point Estimation and Confidence Intervals 

The investigator’s objective is to use the data to draw conclusions about Rx.  She is interested in 
aveRx and SDRx because these summary statistics provide information about the responses that 
would be observed if this outcome measure was collected on the entire treatment population, the 
conceptual population consisting of the target population with all patients subjected to Rx.  

Suppose the investigator wishes to describe the mean response in the treatment population; this 
unknown population parameter is denoted by µRx.  Her best guess, or sample estimate, of this 
population mean response is aveRx, the average response in the random sample of nRx patients.   

The investigator needs to describe how precisely determined aveRx is as an estimate of µRx; this 
information is provided by the standard error (SE).  For the average of a simple random sample,  

naveSE /)( σ= , 
where σ is the standard deviation in the population.  SE(ave) is directly proportional to σ and 
decreases as the sample size n increases.  More precisely, SE(ave) varies inversely as n  so, for 
example, doubling the precision requires four times as large a sample.   

Measurement Error 
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The SE describes the variability of an estimate in repeated sampling.  If one imagines drawing a 
large number of simple random samples of size n from the same target population, then the 
collection of values of ave in these simple random samples can be described as follows:  

• a majority of the values (about 68%) will lie within one SE of the population mean µ,  
• most of the values (about 95%) will lie within two SEs of µ,  
• essentially all of the values (about 99.7%) will lie within three SEs of µ.   

A more detailed description is that the histogram of this collection of values of ave can be 
approximated as a normal curve, with a mean of µ and a standard deviation of SE(ave).  

The Central Limit Theorem establishes that this description of the sampling distribution of the 
sample average will apply irrespective of the form of the histogram of the data in the target 
population, provided that the sample size n is reasonably large.  The only limitation to the 
application of this result is precise interpretation of what is required for the sample size n to be 
“reasonably large”.  If the histogram of the data in the target population is highly skewed (as is 
sometimes the case for both change in lesion burden and accumulated combined unique activity 
data) or otherwise poorly behaved, then a larger sample size is required before this description 
will provide a good approximation.  But, for many of the outcome measures collected in clinical 
trials, this description will provide an adequate approximation even for quite modest values of n.   

In the context of a clinical trial, the population of interest is a conceptual population, so the 
population standard deviation σRx is unknown and must be estimated by SDRx, the standard 
deviation in the sample.  This leads to the estimated standard error of the estimate aveRx as  

RxRxRx nSDaveES /)(ˆ = . 

The investigator can now identify a range of plausible values for µRx, the unknown mean 
response in the treatment population, by constructing a confidence interval (CI).  The 
approximate α−1  CI for µRx is given by 

)(ˆ
2/ RxRx aveESzave α± , 

where the cut-off value zα /2  is such that the area to the right under the standard normal curve is 
equal to α / 2 .  For the common choices of 90%, 95% and 99% levels of confidence, these cut-
off values are 1.65, 1.96 and 2.58 respectively.  The width of this approximate CI increases as 
the variability increases, as the sample size decreases, and as the level of confidence increases.   

But the investigator’s primary objective is to draw conclusions concerning differences between 
the treatment and placebo populations to identify the benefit future patients would derive from 
Rx over and above any benefit derived from Pl.  If a beneficial effect of Rx corresponds to 
lowering the mean response (as for change in lesion burden and accumulated combined unique 
activity data), then the parameter of interest might be µPl - µRx, the difference in population 
means that can be attributed to the effect of Rx.  This unknown population parameter would be 
estimated by avePl - aveRx, and an approximate α−1  CI for µPl - µRx would be given by: 

)(ˆ
2/ RxPlRxPl aveaveESzaveave −±− α . 

For independent simple random samples from two distinct populations, as in a randomized 
controlled clinical trial, the SE  for the difference of the sample averages is given by: 

22 )(ˆ)(ˆ)(ˆ
RxPlRxPl aveESaveESaveaveES +=− . 
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This CI provides a range of plausible values for µPl - µRx, the unknown population parameter of 
interest, thereby indicating the possible magnitude of the treatment effect.  In particular, if the 
calculated CI contains the value 0, then at the α−1  level of confidence, the data fail to provide 
a clear indication of an effect due to Rx (relative to Pl).   

Testing Hypotheses 

The usual approach taken to address the key question of whether the data provide convincing 
evidence of an effect due to Rx is based on hypothesis testing.  When the parameter of interest is 
µPl - µRx, the investigator carries out a test of significance of the null hypothesis, H0: µPl - µRx = 
0, or equivalently, H0: µPl = µRx.  To do so, the investigator calculates the Z-statistic,  

)(ˆ/)( RxPlRxPl aveaveESaveaveZ −−= . 
This re-expresses the estimate of the parameter of interest, avePl - aveRx, in terms of its number 
of estimated SE’s away from 0, the value of the parameter of interest under H0.   

The investigator then evaluates the probability, under the assumption H0 is true, of observing a 
value of this Z-statistic as extreme or more extreme than the value observe; this is the P-value 
corresponding to the observed value of this Z-statistic.  In the clinical trials context, two-sided 
alternatives to the H0 are usually contemplated (a beneficial effect due to Rx is anticipated but 
the possibility that Rx may be detrimental should not be overlooked), so both negative and 
positive values of the Z-statistic as extreme or more extreme than the value observed must be 
considered when calculating the P-value.   

Based on the Central Limit Theorem, an approximate P-value can be evaluated by comparing 
the observed value of this Z-statistic to the standard normal curve.  Small P-values correspond to 
extreme values of the Z-statistic; for example, values of Z = ±1, ±2 and ±3 lead to approximate 
two-sided P-values of 0.32, 0.05 and 0.003 respectively.  There are two possible explanations 
for an observed extreme value of the Z-statistic: either H0 is true but the samples led to an 
extreme value of avePl - aveRx, an event of low probability, or H0 is false, in which case a value 
of avePl - aveRx quite different from 0 is not surprising.  Events of low probability are not 
expected to occur, so small P-values are interpreted as evidence that H0 is false; the smaller the 
P-value, the more convincing the evidence is considered.   

The strength of evidence represented by a P-value is on a continuum of possible values between 
0 and 1, so sharp dividing points such as the popular 0.05 are totally arbitrary and have no 
meaning; P-values of 0.051 and 0.049 represent evidence of essentially identical strength.  
There can be no absolute standard for how small a P-value should be considered a definitive 
refutation of H0.  For any context, this depends on the consequences of the two possible errors: 

• Type 1 error: rejecting H0 when it is true (false positive finding),  
• Type 2 error: failing to reject H0 when it is false (false negative finding).   

Reports of experimental results should always present the actual P-values so readers can decide 
for themselves if they find the evidence against H0 convincing.   

The logic of a test of significance deserves careful attention.  The approach is directed towards 
rejecting H0 to substantiate a claim that a difference exists.  The P-value provides an indication 
of the strength of evidence against H0.  A test of significance can result in a definitive 
conclusion that H0 is false, but failure to reject H0 indicates only an absence of evidence of a 
difference and provides no indication how large a difference might still exist (a CI is better 
suited to this task).  If the study was not designed with adequate sensitivity to detect clinically 
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meaningful differences, for example, then it is quite unlikely to lead to a rejection of H0.  Thus, 
failure to reject H0 should not be interpreted as establishing that H0 is true.   

Sample Size Calculations 

How many patients should be randomized in a clinical trial designed to assess the effect of Rx 
relative to Pl?  This question is usually addressed by specifying desired levels for the chances of 
making Type 1 and Type 2 errors with a test of significance of the relevant null hypothesis.  If 
the investigator will measure the magnitude of the treatment effect by µPl - µRx, the difference in 
mean response in the placebo and treatment populations, this becomes H0: µPl = µRx.   

Formally, it is assumed H0 will be rejected if the P-value from the test of significance is less 
than some pre-specified value, called the level of significance of the test and denoted by α; the 
chance of making a Type 1 error is then equal to α.  The common choice of α = 0.05 means 
there is a 1 in 20 chance of deciding there is a difference in the mean responses of the placebo 
and treatment populations (rejecting H0) when no such difference exists.  

Specification of the desired chances of Type 2 error involves two choices.  First, the investigator 
must identify a meaningful difference in the values of µPl and µRx, say µPl - µRx = ∆.  In addition, 
she must specify the desired level for the chance of making a Type 2 error when µPl - µRx = ∆ 
(failing to reject H0 when the mean response on the placebo population exceeds that on the 
treatment population by ∆).  The chance of making a Type 2 error is denoted by β and 1 - β is 
called the power of the test (at the alternative µPl - µRx = ∆).  Common choices for 1 - β are 0.80, 
0.90 and 0.95.  These correspond to chances of 1 in 5, 1 in 10 and 1 in 20 of failing to detect the 
specified meaningful difference ∆ in the values of µPl and µRx, so a clinical trial designed to have 
a power of 0.90 or 0.95 is much more desirable than one designed for a power of 0.80.   

With a specified level of significance, increasing the sample size increases the power of a test 
(equivalently, decreases the chances of a Type 2 error).  For a two-sided test of significance 
based on the Z-statistic described above, the sample size per arm required to achieve the desired 
levels of both the Type 1 and Type 2 errors is  

( ) ( ) 2222
2/ /∆++≥ RxPlzzn σσβα , 

where ∆ is the value of µPl - µRx that is to be detected with the specified power of 1 - β.   

The first term in this expression for the required sample size involves only the specified levels 
of the chances of Type 1 and Type 2 error.  For the common choice of α = 0.05, zα/2 = 1.96, 
while zβ = 0.84, 1.28 and 1.65 for 1 - β = 0.80, 0.90 and 0.95, leading to 

( )z zα β/2

2
+ ≈  7.8, 10.5 and 13.0 respectively. 

Hence, increasing the power of a level α = 0.05 test from 0.80 to 0.90 requires an increase in the 
sample size of roughly one-third, while increasing the power from 0.80 to 0.95 requires an 
increase in the sample size of roughly two-thirds.  These are substantial increases in the required 
sample size but each one-third increase results in halving the chances of a Type 2 error, so these 
higher values deserve serious consideration as choices for the power.   

The expression for the required sample size makes it clear that ∆, the difference to be detected in 
the mean responses of the placebo and treatment populations, plays a critical role.  In particular, 
if a difference one-half as large is to be detected, then the required sample size is four times as 



 7 

large.  Similarly, a context in which the standard deviations in both the placebo and treatment 
populations are twice as large will require a sample size four times as large.   

The main difficulty in determining required sample sizes is usually lack of adequate knowledge 
about the population standard deviationsσ Pl  and σ Rx , particularly σ Rx .  Natural history data on 
patients eligible for the planned clinical trial provides an indication of the mean response and 
standard deviation to be anticipated on the Pl arm.  Based on knowledge of the size of the 
treatment effect that would be clinically important, the investigator should be able to decide on 
the magnitude of the difference in the mean responses to be detected.  But often there is little 
information available on how variable the responses of patients on the Rx arm are likely to be.  
This considerable uncertainty implies there can be no single answer to the sample size question.  
Rather, required sample sizes should be evaluated for ranges of plausible values of all uncertain 
input parameters.  Careful judgment needs to be exercised to come to a final decision on an 
appropriate sample size for a contemplated clinical trial. 

Qualifying Comments 

The methods discussed above are approximate: their validity relies on the approximation of the 
sampling distribution of the sample average by a normal curve as justified by the Central Limit 
Theorem.  The quality of this approximation depends on the form of the histogram of the 
responses in the populations from which the samples are drawn and on the size of the samples.  
For any sample size, the better behaved the histogram of the population (closer to a normal 
curve) the more accurate will be the approximation.  The sample sizes employed in clinical trials 
in MS ensure such approximations are adequate for most inferences desired in such contexts.   

There are some exceptions, however.  Accurate approximations cannot be expected for very 
small P-values.  But the appropriate inference is clear with a very small P-value, so its exact 
value is not so critical.  This explains the usual practice of citing any P-value which turn out to 
be less than 0.001 (say) when calculated using such an approximation, as simply P < 0.001.   

Exceptions can also occur in subgroup analyses.  For example, the frequent MRI cohort of the 
pivotal Phase III clinical trial of interferon beta-1b consisted of all the patients randomized at a 
single center [6].  These 52 patients can also be viewed as representing random samples from 
conceptual populations, but the samples are rather small so there could be some doubt about the 
quality of the approximations the Central Limit Theorem would provide in this case.   

Two strategies are available for dealing with such cases.  The first is to transform the data to 
make the histogram better behaved.  The methods described are then applied to the transformed 
data.  The main limitation of this strategy is that the choice of transformation can seem arbitrary.  
In fact, theoretical results and experience make this a very effective strategy.  For example, 
transforming count responses by taking square roots and time-to-event data by taking logs often 
works well.  Both transformations greatly reduce large values in the data set and therefore can 
be effective at reducing positive skewness.  But neither deals effectively with extreme outliers.   

The second strategy involves replacing the data by their ranks and then using a rank-based 
nonparametric procedure, such as the Mann-Whitney-Wilcoxon statistic to carry out the desired 
inference.  This greatly reduces the impact of any outliers in the data set and thus leads to more 
robust inferences.  A limitation of this strategy is that nonparametric procedures tend to be 
focused on testing hypotheses and may not readily lend themselves to estimating the magnitude 
of a treatment effect.  Also, such procedures discard much of the information on magnitude in 
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the data and therefore, in circumstances where parametric procedures are appropriate, require 
larger sample sizes to achieve the same inferential goal.   

To conclude this subsection, special circumstances are described in which slight variations of 
these procedures should be used.  Suppose it is known that the standard deviations in the 
placebo and treatment populations are the same, σσσ == RxPl  say.  Although this would be a 
rare circumstance in the clinical trials context, then SDPl and SDRx both estimate the common 
population standard deviation σ , so a better estimate is obtained by combining these two 
estimates.  Statistical theory establishes that this should be done by forming SDpooled, where 

SD n SD n SD n npooled Pl Pl Rx Rx Pl Rx= − + − + −[( ) ( ) ] / ( )1 1 22 2 ; 
this estimate is said to be based on n nPl Rx+ − 2  degrees of freedom.  This pooled estimate is 
then used to estimate the values of SE(avePl) and SE(aveRx), leading to  

RxPlpooledRxPl nnSDaveaveES /1/1)(ˆ +=− . 
The approximate procedures described above then apply as before. 

Suppose that, in addition, the histograms of the placebo and treatment populations are known to 
be well approximated by normal curves.  Using Student’s t curve (with n nPl Rx+ − 2  degrees of 
freedom) to obtain the cut-off values for forming CI’s and calculating P-values then yields exact 
inferences.  For a 95% level of confidence, the Student’s t cut-off values are 2.23, 2.09, 2.01 and 
1.98 for 10, 20, 50 and 100 degrees of freedom.  Each is slightly larger than the corresponding 
standard normal cut-off value of 1.96, so use of Student’s t results in slightly wider CI’s and 
larger P-values.  But these differences are substantial only for small values of the degrees of 
freedom; that is, only for a small total sample size n nPl Rx+ .  Except perhaps for subgroup 
analyses, this variation has little impact for clinical trials in MS. 

In practice, these procedures based on the use of SDpooled and Student’s t cut-off values are often 
used even when the assumptions required to justify their use cannot be strictly verified.  This 
works very well provided the sample sizes on the two arms are roughly equal – as would 
typically be the case in the clinical trials context.   

More General Contexts 

The discussion has focused on the special case where the parameter of interest is µPl - µRx, the 
difference in the mean responses in the placebo and treatment populations.  But these methods 
can be applied in a great variety of problems arising in clinical trials comparing two arms.  In 
general, there is a parameter of interest,θ  say, that forms the basis of the comparison of the two 
corresponding conceptual populations.  From the data collected in the clinical trial, an estimate 
$θ  of the parameter of interest would be available, together with )ˆ(ˆ θES , an estimated standard 

error for that estimate.  An approximate α−1  CI for the parameter of interest is then  

)ˆ(ˆˆ
2/ θθ α ESz± . 

Similarly, the Z-statistic for the test of significance of the null hypothesis, H0: θ  = 0, is 

)ˆ(ˆ/ˆ θθ ESZ = , 
thereby allowing the evaluation of an approximate P-value.   



 9 

It is usually clear how $θ  should be calculated.  The only technical obstacle is determination of 
the appropriate formula for )ˆ(ˆ θES .  Implementation of these inferential techniques is then 
straightforward.  But the necessary details of carrying out sample size calculations depend upon 
the choice of the parameter of interest and are often not so straightforward.  Handbooks provide 
guidance for the most common situations arising in the clinical trials context [7].  

For the designs usually employed in clinical trials, expressions for )ˆ(ˆ θES  for most estimates of 
interest can be found in statistical texts [1-4].  For some estimates, available formulae are 
themselves approximations, typically relying on the availability of large samples, but in some 
instances depending in addition upon assumptions concerning the histograms of the responses 
for the target population.  The bootstrap method is an alternative computer-intensive method 
that can be used routinely to estimate )ˆ(ˆ θES  for most estimates [8, 9].  

The fundamental requirement for the use of these approximate methods in such more general 
contexts is that the sampling distribution of $θ  should be reasonably well approximated by a 
normal curve.  Provided both sample sizes, nPl and nRx, are reasonably large this would almost 
always be the case although the advice of a statistician should be sought to insure that technical 
issues concerned with how best to make such approximations are carefully addressed.   

5. Analyses Incorporating Covariates 

To this point, discussion has been limited to the simple situation where the only characteristics 
of the patients taken into account are the arms to which they are randomized.  Such unadjusted 
comparisons may be required for certain purposes (e.g., regulatory approval), but incorporating 
covariates of potential importance is essential for an efficient and comprehensive analysis.   

For continuous outcome measures like the change in lesion burden such analyses can be 
implemented with ordinary regression analysis.  This approach might also be used for lesion 
count responses provided the responses are relatively large for at least most of the patients, 
although this would often be more suitable after some transformation (e.g., square root) of the 
count responses.  Poisson regression analysis provides a more generally applicable approach, 
particularly in the general form allowing for overdispersion in the count responses.  Logistic 
regression analysis provides corresponding methodology for binary responses.   

Such covariance analyses have multiple purposes.  One is to induce closer equivalence between 
the Rx and Pl arms.  Despite randomization, some degree of imbalance on covariates will 
always exist and a covariance analysis can account for such imbalances.  Incorporating into the 
analysis covariates identified as important in advance is to be preferred to the common approach 
of carrying out tests of homogeneity across the arms on each covariate and ignoring those where 
no difference is detected.  In particular, any covariates used in stratification of the randomization 
scheme should be incorporated into the analysis of the resulting data.   

The use of covariance analysis to carry out interaction tests examining the consistency of 
treatment effects across subgroups of patients (e.g., subgroups defined by gender) provides a 
more coherent approach than the common practice of comparing the Rx and Pl arms within such 
subgroups.  Such subgroup analyses should be undertaken only if the corresponding interaction 
test indicates an effect and, in any case, should be viewed as exploratory.   
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In the context of clinical trials, covariance analysis is frequently used to clarify the extent to 
which detected differences are due to Rx rather than other factors associated with response.  But, 
covariance analysis also has the potential to provide a more powerful comparison of the Rx and 
Pl arms through the reduction of variability that results when covariates highly associated with 
the response are taken into account.  Thus, for example, adjustment for the baseline combined 
unique activity count (if available) should be expected to lead to a more sensitive analysis of the 
accumulated combined activity data.  Covariance analyses deserve to be much more fully 
utilized in the analysis of data collected in MS clinical trials.   

6. Longitudinal Analyses 

The discussion to this point has not utilized the longitudinal nature of the data collected in the 
clinical trials context.  We have assumed that a single value, suitably summarizing the data 
collected over time for each patient, is utilized as the response.  But this prevents any critical 
examination of the patterns over time that may contain important information concerning the 
action of Rx.  This is equivalent to throwing away some of the information collected in the trial.  
Further, the longitudinal data could allow improved estimation of change over time and thereby 
a more sensitive assessment of the differences between the arms.   

The wish to make better use of the longitudinal data is reflected in the common approach of 
carrying out separate analyses of the data summarized from baseline to each time point of 
interest.  For example, if only annual T2 MRI scans were collected in a trial with two years of 
follow-up, the change in lesion burden from baseline to Year 1, from baseline to Year 2 and 
from Year 1 to Year 2 might be analyzed separately.  This simple approach provides only an 
indirect assessment of the patterns over time but is reasonable if there are only a few time points 
of interest.  On the other hand, serious difficulties of multiple testing are encountered when there 
are many time points of interest as in a frequent MRI setting.  What is needed are methods that 
allow simultaneous analyses of the data at all the individual time points.   

Classical statistical methodology for longitudinal data, such as repeated measures analysis and 
growth curves analysis, is not well suited to the clinical trials context.  Both require a rigid 
schedule of data collection and strong assumptions on the variance and correlation structure in 
the data.  Further, neither can easily handle the missing data that inevitably arise in the context 
of clinical trials.  More flexible methodology designed specifically for such analyses is now 
readily available and deserves to be much more widely used to provide more comprehensive 
analyses of the data collected in clinical trials and other longitudinal studies.   

One general approach, generalized estimating equations (GEE), is based on extensions of the 
equations used for regression analysis [10, 11].  The focus in this approach is on the relationship 
of the outcome measure for the patients on each arm, as a group, to covariates (including group 
membership and time on study), so it involves population-average modeling.  The approach is 
semiparametric in that it does not rely on strong assumptions about the joint distribution of the 
repeated responses on individual patients.  This limits the types of inferences that can be made 
(e.g., it is not suited to making predictions for individuals) but makes it particularly attractive for 
the clinical trials context.  The GEE approach provides extensions of ordinary regression for 
continuous responses such as lesion burden, of Poisson regression for count responses such as 
active lesion counts and of logistic regression for binary responses such as active scan.  It 
provides a unified approach to analysis of longitudinal quantitative MRI data [12]. 
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Fully parametric approaches rely on specification of the joint distribution of the repeated 
responses of individual patients.  With random effects models [13, 14], the focus is on the 
relationship of each patient’s outcome measure to the values of that patient’s covariates, so this 
is also referred to as subject-specific modeling.  Another approach is based on hidden Markov 
models [15, 16].  A fully parametric model that adequately captures the detailed structure of 
MRI lesion count data over time in both Rx and Pl arms is an essential tool for addressing 
questions such as the optimal scheduling of MRI imaging for a Phase II clinical trial in MS. 

Excellent texts are available that provide detailed developments of methods for the analysis of 
longitudinal data [17, 18].  Analyses based on summary measures over time may suffice for the 
primary analyses of the results of many clinical trials, but longitudinal analyses deserve a much 
more prominent role in the secondary analyses that are an essential part of the comprehensive 
review of the data collected in MS clinical trials.  Indeed, some critical issues can be addressed 
properly only through the use of longitudinal analyses [19, 20].    
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